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Imperfect Surrogate Users: Understanding Performance
Implications of Augmentative and Alternative
Communication Systems through Bounded Rationality,
Human Error, and Interruption Modeling
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Nonspeaking individuals with motor disabilities frequently rely on augmentative and alternative communica-
tion (AAC) systems that allow users to communicate through a text entry interface coupled with a speech
synthesizer. Such systems are notoriously difficult to evaluate with end-users. However, recent research has
proposed envelope analysis as a method to estimate text entry rates and keystroke savings by simulating the
interaction of an expert surrogate user entering sentences on a conceptual word-predictive text entry system.
While only a part of the evaluation process of an AAC system, this method enables AAC designers to benefit
from quantitative insights early on in the design process. This paper extends prior work by (1) demonstrating
how to incorporate natural language generation, such as sentence generation, in such analyses; (2) presenting
a model of an imperfect surrogate user that incorporates bounded rationality, human error, and interruptions
to provide a more realistic simulation of text entry behavior; and (3) demonstrating how to estimate model
parameters by observing users’ actual typing behavior. We validate the model with data collected from eight
participants using an AAC system on a touchscreen.
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1 INTRODUCTION
Nonspeaking individuals with motor disabilities are heavily reliant on augmentative and alternative
communication (AAC) systems to communicate. Such systems provide nonspeaking users with
means to communicate via a speech synthesizer. Predictive text entry AAC systems provide access
techniques, such as eye gaze, dwell mouse click, touchscreen, and so on, and provide text predictions
in the form of word, phrase, and sentence predictions. These features enable literate AAC users to
potentially increase their text entry rates.

However, evaluating AAC systems with actual users poses a challenge since the user group
is highly heterogeneous, with individual access needs, technical solutions, and personal support
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infrastructure. This makes it difficult to adopt best practices in user interface design, such as
iterative refinements of interface features, co-design, or studying long-term effects through deploy-
ment studies [21]. As a consequence, prior research has suggested the merits of adopting design
engineering methods to complement current AAC design practice (e.g. [21]). Briefly, this involves
identifying a conceptual design in the form of a parameterized function model [23], which can be
subsequently analyzed using envelope analysis, which simulates system performance and thus
allows designers to understand possible entry and error rates, keystroke savings, and so on, that may
be conceptually possible using a particular system design. This allows AAC designers to understand
likely performance implications at an early stage in the design process, serving as complementary
design know-how in tandem with traditional user-centered AAC design approaches. Prior work
using this approach has studied performance envelopes of context-aware sentence retrieval [21]
and word prediction [23].

Recent works have begun to use natural language generation (NLG) technologies to enable AAC
systems to generate entire sentences with reasonably acceptable results [6, 44]. State-of-the-art
technologies, such as ChatGPT [34] and GPT-4 [35], demonstrate the potential for NLG-assisted
AAC systems to further increase text entry rates. However, these approaches have not been
integrated into functional AAC systems with graphical user interfaces (GUIs), and such systems
are difficult to design and assess since their performance is governed by a very large number of
parameters. Some of these parameters relate to the user interface, such as the number of word and
sentence suggestions, some relate to the underpinning models themselves, and some are latent and
relate to the strategies users adopt to optimize their performance, such as typing a few letters and
then looking at a word prediction.

Kristensson and Müllners [23] highlight the substantial impact of text entry strategy on the text
entry rate and keystroke savings for word prediction text entry systems. This prior work serves as
the foundation for the current research. The present study aims to extend upon these findings by
investigating the impact of text entry strategy on predictive systems that include both word and
sentence prediction functions. The inclusion of a sentence prediction function brings additional
interaction points, thereby adding an extra layer of complexity to the system. Therefore, it is
essential to understand how it influences the overall efficiency and effectiveness of the predictive
system.
Prior envelope analysis studies [21, 23] have estimated the upper bound of text entry rate and

keystroke savings based on the assumption of “perfect” surrogate user models that can perform
text entry tasks precisely, that is, they simulate error-free expert performance. As such, they do
not accurately reflect actual user behavior, which limits the benefits of using a design engineering
approach to guide early text entry system design.

This paper contributes to the development of design engineering methods to complement AAC
design practice by making three contributions:

• We extend envelope analyses to NLG-based AAC, including Large Language Model (LLM)
sentence generation, such as GPT.

• We present a model of an imperfect surrogate user that unlike prior work [21, 23] models
users that are not behaving error-free or optimal. The model does this by incorporating
three components: a bounded rationality model, a human error model, and an interruption
model. These additional models capture the fact that users’ rationality is bounded, users
make mistakes, and users can be interrupted in their typing tasks.
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• A limitation of prior work [21, 23] was that model parameters for envelope analysis had to
be estimated by the designer. We present a method for estimating such parameters for actual
user behavior at runtime and use this method to validate our model with eight users.

1.1 Paper Structure
This paper has two main objectives: (1) to extend prior work [23] of a conceptual design of word
predictive text entry system to a text entry system with word and sentence prediction functions;
and (2) to propose and apply the imperfect surrogate user model to perform envelope analysis and
estimate parameters from actual user data at runtime. To achieve these objectives, the rest of
this paper is structured as follows. First, we review prior work in AAC system design, bounded
rationality, human error, and interruptions for text entry modeling. Second, we present a function
structure model for the design of a word and sentence predictive text entry system for AAC. We
calculate the upper bounds on error-free and optimal expert text entry rate and keystroke savings
for both able-bodied and AAC users based on parameters obtained from the literature. Next, we
introduce the imperfect surrogate user model and use it to carry out envelope analysis to understand
the potential performance impact of incorporating human performance factors along with text entry
strategies on text entry rates and keystroke savings. We then explain how to estimate parameters for
the model by observing actual user behavior. We use this method to validate the imperfect surrogate
user model with data collected from eight participants using an AAC system on a touchscreen
tablet PC. Finally, we discuss the implications of this work and conclude.

2 RELATEDWORK
The literature has long considered approaches for evaluating text entry methods (e.g. [59]), such
as expanded rehearsal interval training [58], representative stimulus sentences [28, 50], stimulus
sentence presentation styles [24], and composition tasks [14, 51]. It has also been recognized that for
text entry methods to be successful, they need to consider wider issues beyond merely improving
entry and error rates (e.g. [19, 20]). However, unlike other text entry domains, AAC also brings its
own unique design issues.

2.1 Challenges in AAC Systems Design
The study of AAC has always been challenging. In general, the demand for research-driven techno-
logical development is enormous, especially in obtaining insights from the processes underpinning
basic cognitive, motor, sensory-perceptual, and linguistic functions and utilizing them to max-
imize human-computer interaction efficiency through the implementation of AAC devices and
methods [22, 25]. Moreover, the lack of researchers, engineers, and technical developers [30] re-
sults in a large number of unanswered questions and technical problems [55], especially when AI
technologies, such as NLG models [6, 44], are involved as design materials.
User experience studies of AAC systems often employ qualitative empirical approaches, such

as field studies, which can take many weeks to several months to produce outputs [4, 29]. Other
methods of evaluating user experience involve questionnaires [33]. However, such post-hoc eval-
uation methods may fail to capture immediate feedback on user experience or aspects not listed
in the questionnaire. For example, Black et al. [4] point out that users do not always select the
correct prediction once it appears on the system, however, the researchers fail to understand
users’ intention behind this action. Besides, it can be challenging for AAC users to think aloud
while using the system. Video analysis can capture the entire interaction process [53] and may
provide insights into the intention behind user actions. However, this approach is time-consuming,
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requiring researchers to analyze the video frame-by-frame. Hence, efficient methods to understand
and identify AAC user performance for iterative improvement of NLG-based AAC systems are still
lacking.

2.2 Computational Models for Text Entry
The idea of viewing interaction through the lens of a computational model is not new but has
recently been invigorated through the establishment of computational interaction [36] and the
development of new mathematical tools to model interaction, such as Bayesian methods [54]. The
concept of computational models for text entry, commonly used in the design of general text entry
systems, can also assist in the design of AAC systems without the extensive involvement of AAC
users. These text entry models typically focus on twomain directions. The first direction is related to
Fitts’ law (or FFitts law [3] for touchscreen-based research), which has been extensively researched
for non-predictive text entry, modeling user typing speed on different keyboard layouts using
different typingmethods, such as two-thumb text entry onmini-QWERTYmechanical keyboards [9],
stroke-based OPTI II soft keyboards [40] and stylus-based QWERTY soft keyboards [48]. These
models quantitatively simulate the time cost of each click or gesture stroke movement from one
key to another, taking into account the distance of each movement and the interaction methods.

The second direction of text entry modeling focuses on predictive text entry features, which
heavily involve decision-making processes. Instead of focusing on calculating the time cost of the
finger moving between keys via Fitts’ law based models that can be impacted by system layouts
and typing methods, these studies [21, 23] investigate how predictive text features can increase or
decrease the text entry rate and keystroke savings at a function level.

It is particularly important to investigate complex systems at a functional level, understanding how
multiple functions and interaction points in a complex system mutually impact user performance
and lead to different system efficiency and effectiveness. For example, research questions could be
what is the best time for a user to check word predictions, and when should a user give up on word
predictions [23]. Every keystroke takes time from users, which is particularly important to consider
in the case of AAC users. The trade-off here is that, although correct predictions can save valuable
keystrokes for users, having the user checking predictions generated from too little user input may
cost the user extra time, as further user input is required to generate the user’s expected predictions.
Hence the goal is to type the correct text with minimum effort using prediction functions. This is a
typical task analysis (TA) issue, which is at the heart of this paper.
Design researchers have been building user models for TA, such as KLM (Keystroke Level

Model) [7], MHP (Model of Human Processor) [57], and GOMS (Goals, Operations, Methods, and
Selection rules) [8], using psychological theories and simulation modeling since at least the 1980s.
These interaction models investigate how users reason and make decisions when using complex
interfaces, with the intention to allow different design elements or design configurations to be
tested prior to the development of a working system or before carrying out user studies [27, 41, 43].

In this vein, Kristensson and Müllners [23] propose a computational model at a functional level,
including three parameters about text entry strategy, to simulate and analyze the impact of text
entry strategies on text entry rate and keystroke savings in rational and error-free settings. This
model enables an explanation of the mechanism for why word prediction is typically not useful for
an able-bodied user.

However, these studies share a common limitation in that they assume text entry is error-free
and that the surrogate user is an expert, which may not necessarily reflect reality.
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2.3 Human Performance Factors in Text Entry
Empirical studies in bounded rationality [12, 17], human error [11, 13, 24], and interruptions [5]
have shown that such human factors concerns have a negative impact on a user’s text entry rate.
The concept of bounded rationality is derived from behavioral economics and public policy

for decision-making [46]. The main assertion of bounded rationality is that people, limited by
time, knowledge, and resources, make satisfactory decisions instead of maximizing utility [45].
Specifically, Quinn and Zhai [38] note that text entry suggestions come with a cognitive cost, while
Sarcar et al. [42] adopt a computational rationality model to develop an ability-based optimization
text entry system for smartphones.
Interruptions frequently occur in daily life. Pielot et al. [37] report that on average, partici-

pants received 63.5 mobile notifications per day, such as messages and emails. Borst et al. [5]
propose an interruption model of memory-for-problem-states verified with text entry experiments,
which integrates three factors: interruption duration, interrupting-task complexity, and moment of
interruption.
Human error is one of the most common human factors concerns in text entry and is more

thoroughly studied than other factors. For instance, the autocorrect function is designed to reduce
the impact of human errors. Further, as for example Banovic et al. [1] point out, making typing
errors when entering text is inevitable, and correcting errors is time-consuming. As a result, typists
may slow down their speed to reduce typing errors. Accordingly, Banovic et al. [1] propose a
computational model to estimate the effects of risk aversion to errors on expert typing speeds for
QWERTY mobile touchscreen keyboards with or without autocorrect [2].

In summary, prior research has demonstrated that bounded rationality, human error, and inter-
ruptions are three significant human factors concerns that adversely affect text entry performance.
Computational models have been proposed for general human-computer interaction tasks, with
each model focusing on a specific human factor. Moreover, specific computational models for
text entry have been proposed to estimate the upper bound of expert text entry rates under error
conditions. However, there is currently no computational model that integrates all three factors to
estimate the performance of non-expert users for word and sentence prediction systems, which is
particularly important for AAC design.

3 FUNCTION STRUCTURE MODEL: TEXT ENTRY STRATEGIES FOR PREDICTIVE AAC
SYSTEMS

The function structure model allows designers to understand system functions and data flows
between functions. This can then be used to derive a human-computer interaction flowchart for
envelope analysis [23]. We adopt this model to illustrate the function descriptions of a predictive
AAC text entry system. To be more specific, the overall function Generate Sentence is decom-
posed into six main functions: Type Key, Predict Current Word, Predict Next Word, Select
Word Prediction, Predict Sentence, and Select Sentence Prediction. These functions are
connected by signal flows represented by text with different fonts and different types of lines (see
Figure 1).
The signal flows provided by the system or the user are categorized into four different types.

First, the user input-related signal flows, including Key Press, Word Selection, and Sentence
Selection, are the user’s physical actions. Second, Word Hypotheses, Sentence Hypotheses, and
Observation are the user’s mental actions. Third, Language Context is the text prediction-related
internal information defined and generated by the system, such as language models and machine
learning algorithms. Fourth,Word and Sentence are system-predicted text selected by the user.
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Fig. 1. Function structure model for NLG-based AAC text entry systems with word and sentence prediction
functions. The fonts indicate different element types. Sans serif text in rounded rectangles indicates the
main functions; Bold text aligned with solid lines indicates users’ physical actions; Normal text aligned with
dash lines represents users’ mental actions; Italic text aligned with dot lines represents the system internal
information; Italic and bold text aligned with dash-dot lines represents the system outputs.

Based on this categorization, performance analysis of this joint user-system gives rise to three user-
simulating parameters and three system-simulating parameters, respectively. The user-simulating
parameters define the time cost of the user’s physical actions and mental actions:
Key Typing Time — 𝑇𝑘𝑒𝑦 Type Key actions include entering letters (Key Press), selecting word

prediction (Word Selection), and selecting sentence prediction (Sentence Selection). This
parameter is determined by the time duration between two contiguous keystrokes entered
by the user without any involvement of considerable mental processing time. Although this
time duration can be estimated by Fitts’ law [26] based on the layout of the keyboard, to
simplify this model, we assume the time cost for every keystroke is identical.

Reaction Time for Word Predictions — 𝑇𝑟𝑒𝑎𝑐𝑡_𝑤 This parameter is a reflection of Select Word
Prediction. It is a substantial time cost for mental action that allows the user to read through
the word prediction list (Observation) and determine whether or not to select a prediction
(Word Hypotheses). We assume the time cost is identical every time the user checks the list.

Reaction Time for Sentence Predictions — 𝑇𝑟𝑒𝑎𝑐𝑡_𝑠 Similarly, this parameter is a representation
of Select Sentence Prediction, estimating the mental action time cost for processing
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Fig. 2. The flowchart for the Overall Text Entry Strategy on an NLG system equipped with word prediction
and sentence prediction functions. The white rectangles indicate the start and the end of a complete sentence
entry task. The white parallelogram is the targeted text. The teal rectangles with solid lines show the specific
status, and the teal rectangles with dashed lines are specific user actions. The pink rhombuses denote strategy
decisions. The yellow rounded squares represent repeated user operations, whose details are illustrated in
Figure 3 and Figure 4.

a sentence prediction (Observation and Sentence Hypotheses). As sentence length impacts
reaction time, we estimate this parameter by multiplying the sentence length in words, 𝐿𝑠 ,
by the reaction time for word predictions (i.e., 𝑇𝑟𝑒𝑎𝑐𝑡_𝑠 = 𝐿𝑠 · 𝑇𝑟𝑒𝑎𝑐𝑡_𝑤). Alternatively, this
parameter can also be estimated empirically via real users.

In addition, the system simulates outcomes based on Language Context, which defines the
likelihood of prediction functions obtaining the correct text when the surrogate user inputs new
text via a single keystroke (e.g. a letter, a predicted word, or a predicted sentence) in a simulated
text entry task. This likelihood is the proportion of queries that yield correct predictions with a
range of between 0 and 1 [23]:
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Fig. 3. The flowchart for Entering the Current Word Strategy Model. It is a module in the overall text entry
strategy model. The big yellow rounded square corresponds to the yellow rounded square with correlated text
in Figure 2. The white parallelogram is the targeted text. The teal rectangles with solid lines show specific
statuses, and those with dashed lines are specific user actions. The pink rhombuses denote strategy decisions.

𝑃𝑝𝑟𝑒𝑑 =
𝑁𝑠𝑢𝑐𝑐𝑒𝑠𝑠

𝑁𝑠𝑢𝑐𝑐𝑒𝑠𝑠 + 𝑁𝑓 𝑎𝑖𝑙

(1)

As described in the function structure model, there are two interaction points at which prediction
functions can boost text entry rate: (1) when typing a word, the system predicts the currently typed
word; and (2) when a word is completed, the system predicts the next word and the entire sentence.
We parameterize the current word, next word, and sentence prediction functions to accommodate
various language models through three parameters:
Current Word Prediction Accuracy — 𝑃𝑝𝑟𝑒𝑑_𝑤_𝑐 The current word prediction function provides

a list of current entering word guesses based on the typed letters and context information,
displayed as a list of words on the system. This design aims to boost the user to finish an
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Fig. 4. The flowchart of Entering the Next Word Strategy Model. It is a module in the overall text entry
strategy model. The big yellow rounded square corresponds to the yellow rounded square with correlated text
in Figure 2. The teal rectangles with dashed lines are specific user actions. The pink rhombuses are strategy
decisions.

expected word by entering the minimum number of letters. To simplify this model, we assign
a value between 0 and 1 to reflect prediction accuracy.

Next Word Prediction Accuracy — 𝑃𝑝𝑟𝑒𝑑_𝑤_𝑛 The next word prediction function predicts the
next word based on previous entries and context information, assisting the user to quickly
form a sentence. Similarly, we assign a value between 0 to 1 to estimate the accuracy. This
function may appear indistinguishable from the current word prediction function in the
interface as it also shows a list of predicted words on the system, however, the underlying
algorithms are different. Thus we separate word prediction accuracy into two parameters.

Sentence Prediction Accuracy — 𝑃𝑝𝑟𝑒𝑑_𝑠 Information retrieval-based sentence generation and
large language models-based (LLMs-based) sentence generation are two mainstream sentence
prediction approaches that have different attributes. The former retrieves text from a limited
data set and produces sentence suggestions, while the latter, such as ChatGPT [34] and GPT-
4 [35], produces sentence predictions based on prompts. However, the acceptance of predicted
words and generated sentences under the scope of LLMs remains an unanswered question,
as individuals may have different levels of acceptance of AI-suggested text, which leads to
different 𝑃𝑝𝑟𝑒𝑑_𝑠 values. In addition, the imperfect surrogate user focuses on simulating and
identifying non-expert users’ performance affected by human factors concerns. Therefore,
the mathematical simulation of specific word and sentence prediction functions is out of the
scope of this research. Accordingly, to simplify this model, we assign a value between 0 tand
1 to estimate the accuracy, which we derive empirically from an existing AAC text entry
system [56]. We discuss this procedure in Section 3.2.

3.1 Text Entry Strategy Modeling
There are three parallel interaction points in interacting with a text prediction system: (1) letter-by-
letter typing; (2) selecting a word prediction; and (3) selecting a sentence prediction. The main goal
of studying text entry strategy is to minimize the cost of a poor guess (checking the prediction list
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but end up without a satisficing result) and maximize entry rate (quickly finish the sentence by
saving keystrokes). The strategy is defined by whether, and when, referring to the word predictions
and the sentence predictions. In other words, the strategy determines how users arrange their
physical and mental actions.

Operator Description and Remarks Time (sec) or Rate (%)
𝑇!"# Keystroke time

Spinal cord injury users with good typing skills without prediction systems 0.60 𝑠𝑒𝑐$

Disabled user on AZERTY keyboard 2.08 𝑠𝑒𝑐%

𝑇&"$'( Reaction time for word prediction
Spinal cord injury users unfamiliar with word prediction systems 1.20 𝑠𝑒𝑐$

𝑅"&&)& Human error rate
Disabled user on AZERTY keyboard 10.28 %%

Table 1. Available AAC user parameter reference values from the literature 𝑎[18], 𝑏[52].

Kristensson and Müllners [23] demonstrate that, in word predictive text entry systems, such
strategies have a significant impact on text entry rate and keystroke savings. They propose three
text entry strategy parameters for word prediction:
MinimumWord Length — 𝐿𝑚𝑖𝑛_𝑤 The minimum word length strategy restricts the use of pre-

dictions to only words above a certain length, 𝐿𝑚𝑖𝑛_𝑤 . The idea behind this parameter is to
only refer to predictions for longer words to save keystrokes.

Type-then-Look for Word Predictions — 𝑘𝑙𝑜𝑜𝑘_𝑤 The prediction success rate increases when typ-
ing a new letter in a word. This parameter defines the number of letters that need to be typed
before looking at the word prediction list. Holding off the use of the word prediction function
in the initial letters’ entry increases the reliability of predictions and reduces the time for
checking the prediction list.

Perseverance for Word Predictions — 𝑝𝑚𝑎𝑥_𝑤 The system is unlikely to produce accurate predic-
tions for every word, so the user is unlikely to pursue word predictions indefinitely. This
strategy parameter assumes the user checks the prediction every time a new letter is typed.
If the correct prediction is not obtained by the nth letter, the prediction is abandoned. This
parameter defines the number of letters that are typed before stopping to check the word
prediction list.

Similarly, for the sentence predictive function, we define three new corresponding parameters:
Minimum Sentence Length — 𝐿𝑚𝑖𝑛_𝑠 A correct prediction for a long sentence can produce large

keystroke savings. This parameter limits the use of predictions to only sentences above a
certain length, 𝐿𝑚𝑖𝑛_𝑠 , in words.

Type-then-Look for Sentence Predictions — 𝑘𝑙𝑜𝑜𝑘_𝑠 Consistently typing words increases the re-
liability of sentence prediction. This parameter defines the number of words that need to be
typed before looking at sentence predictions.

Perseverance for Sentence Predictions — 𝑝𝑚𝑎𝑥_𝑠 Checking long sentence predictions often takes
a longer time than checking short word predictions. Hence, users may discard sentence
predictions when a certain number of words has been typed. This parameter defines this
cut-off strategy.

Figure 2 illustrates the overall sentence entry strategy on the NLG text entry system equipped
with word and sentence prediction functions. Repeated steps are summarized and modularized
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for simplicity and clarity, and are presented as yellow rounded squares in the graph. The details
of these modules are shown in Entering the Current Word Model (see Figure 3), and Entering the
Next Word Model (see Figure 4) respectively.

3.2 Parameter Allocation for Surrogate Users and Predictive AAC Systems
Envelope analysis essentially simulates the user and system interaction and calculates the perfor-
mance within an envelope of parameterized conditions. Therefore, the choice of these parameters
can affect the results of estimations. In this study, the diversity of system prediction accuracy based
on various language models is out of the scope of this paper. Instead, we aim to investigate the
impact of text entry strategy on system efficiency by using fixed parameters for both surrogate users
and conceptual AAC systems. This approach strikes a balance between over-parameterization and
simplicity and is based on an “uninformative prior” to avoid the need for elaborate distributional
assumptions that may be challenging to justify.
To regulate the prediction accuracy of the system (i.e., 𝑃𝑝𝑟𝑒𝑑_𝑤_𝑐 , 𝑃𝑝𝑟𝑒𝑑_𝑤_𝑛 , 𝑃𝑝𝑟𝑒𝑑_𝑠 ), we utilize

an existing AAC system that integrates word and sentence prediction functions [56], along with a
publicly available fictional AAC-like communications dataset [49]. From this corpus, we randomly
select 100 sentences, which we use for the following envelope analyses and real user text entry
analyses. These sampled sentences vary in length from one to ten words, with an average length
of 5.13 words. To calculate the prediction accuracy utilizing equation 3, we type each sample
sentence on the AAC system and log predicted words and sentences, resulting in 𝑃𝑝𝑟𝑒𝑑_𝑤_𝑐 = 0.71,
𝑃𝑝𝑟𝑒𝑑_𝑤_𝑛 = 0.58, 𝑃𝑝𝑟𝑒𝑑_𝑠 = 0.44. We illustrate the impact of each model on net entry rates and
changes in keystrokes by envelope analyses for each condition. The text entry rate is measured in
words per minute (wpm) and uses the convention that one word is five characters long, including
spaces.

We create an example AAC surrogate user (𝑇𝑘𝑒𝑦 = 0.60𝑠𝑒𝑐 , 𝑇𝑟𝑒𝑎𝑐𝑡_𝑤 = 1.20𝑠𝑒𝑐 , 𝑇𝑟𝑒𝑎𝑐𝑡_𝑠 =

1.20× 5.13 = 6.16𝑠𝑒𝑐 , where 5.13 is the average sentence length in the dataset) using available AAC
user parameter values from the literature, listed in Table 1.
As a comparison, we create another able-bodied surrogate user by adopting the parameter

from the previous study [23]: 𝑇𝑘𝑒𝑦 = 0.26𝑠𝑒𝑐 (based on [3]), 𝑇𝑟𝑒𝑎𝑐𝑡_𝑤 = 0.45𝑠𝑒𝑐 (based on [10]),
𝑇𝑟𝑒𝑎𝑐𝑡_𝑠 = 0.45 × 5.13 = 2.31𝑠𝑒𝑐 , where 5.13 is the average sentence length in the dataset.

3.3 Envelope Analyses and Surrogate Users via KLM
We explore the viable efficacy, in terms of communication rate, of awide range of text entry strategies
on this NLG system through quantitative envelope analyses. The fundamental mechanism of this
analysis is simulating the user performance on the computational system model and calculating the
time cost and keystrokes of a given task via the keystroke level model (KLM) [7], which includes
three operators: physical, cognitive and system:

𝑇𝑒𝑥𝑒𝑐𝑢𝑡𝑒 = 𝑇𝑝ℎ𝑦𝑠𝑖𝑐𝑎𝑙 +𝑇𝑐𝑜𝑔𝑛𝑖𝑡𝑖𝑣𝑒 +𝑇𝑠𝑦𝑠𝑡𝑒𝑚 (2)

We ignore 𝑇𝑠𝑦𝑠𝑡𝑒𝑚 in this analysis since modern predictive text entry systems have a nearly in-
stantaneous responses when producing predictions. Then, according to the text entry strategy
flowcharts (see Figure 2, 3, and 4), we estimate the time cost of a task, 𝑇𝑡𝑜𝑡𝑎𝑙 , as follows:

𝑇𝑡𝑜𝑡𝑎𝑙 =
∑︁

𝑇𝑘𝑒𝑦 +
∑︁

𝑇𝑟𝑒𝑎𝑐𝑡_𝑤 +
∑︁

𝑇𝑟𝑒𝑎𝑐𝑡_𝑠 (3)

which is influenced by the entry strategy parameters 𝐿𝑚𝑖𝑛_𝑤 , 𝑘𝑙𝑜𝑜𝑘_𝑤 , 𝑝𝑚𝑎𝑥_𝑤 , 𝐿𝑚𝑖𝑛_𝑠 , 𝑘𝑙𝑜𝑜𝑘_𝑠 , and
𝑝𝑚𝑎𝑥_𝑠 .
Kristensson and Müllners [23] reveal that text entry strategies on a word predictive system

significantly impact entry rate. They also indicate that keystroke savings do not guarantee savings
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Image a) b) c) d) e) f)

Prediction 
Method

word 
prediction

sentence 
prediction word and sentence predictions

System 
Parameters 𝑃!"#$_&_' = 0.71, 𝑃!"#$_&_( = 0.58, and 𝑃!"#$_) = 0.44

User 
Parameters

AAC surrogate user:
𝑇*#+ = 0.60 sec, 𝑇"#,'-_& = 1.20 sec, 

and 𝑇"#,'-_. = 6.16 𝑠𝑒𝑐

Able-bodied surrogate 
user:

𝑇*#+ = 0.26 sec, 
𝑇"#,'-_& = 0.45 sec, 

and 𝑇"#,'-_. = 2.31 sec

Strategy 
Parameters Value

𝐿/0(_& 2-10 - 2-10

𝑘122*_& 0-5 - 0

𝑝/,3_& 2 - 2

𝐿/0(_. - 2-10 2-10

𝑘122*_. - 0-5 0

𝑝/,3_. - 2 2

a) Net entry rate b) Net entry rate c) Net entry rate

e) Keystroke savingd) Standard deviation of net entry rate f) Net entry rate: able-bodied

Fig. 5. System evaluation with different prediction approaches. In Figure 5a–e, we use an AAC users’ pa-
rameters, while in Figure 5f, we use an able-bodied users’ parameters for comparison. In Figure 5c–f (word
and sentence predictions as prediction method), the values of the fixed text entry strategy parameters are
selected by envelope analyses by comparing each pair of parameters with the net entry rate. 𝑘𝑙𝑜𝑜𝑘_𝑤 = 0,
𝑝𝑚𝑎𝑥_𝑤 = 2, 𝑘𝑙𝑜𝑜𝑘_𝑠 = 0, and 𝑝𝑚𝑎𝑥_𝑠 = 2 yield the maximum net entry rate. We use the same approach for
selecting the fixed values for Figure 5a and 5b. Figure 5a shows that when using only the word prediction
method, checking predictions for words with two to six letters in the first two letters’ inputs leads to a higher
net entry rate. Figure 5b suggests that, when using only the sentence prediction method, checking sentence
predictions in the first two words’ inputs for sentences with four to seven words is optimal. Figure 5c shows
that for AAC users, the optimal strategy is to check word predictions for words with lengths of three to six
and sentences with lengths of four to seven, yielding net entry rates in the range of 8 to 9 wpm. Figure 5d
shows that frequently checking the sentence prediction reduces the stability of the results observed in Figure
5c. Figure 5e reveals that increasing reliance on word and sentence predictions leads to higher keystroke
savings. Finally, Figure 5f shows that for able-bodied users, the optimal strategy is to check predictions for
words with lengths between three and five and sentences with word lengths between four and six, yielding
net entry rates in the range of 25 to 28 wpm.

in time. By carefully selecting the range of strategy parameters, a positive net entry rate can be
achieved, such that the net entry rate is the entry rate difference between assisted text entry and
straightforward letter-by-letter typing. A positive net entry rate indicates that the predictive system
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improves typing performance. Accordingly, on the basis of the prior study [23], the motivation
behind this analysis is to identify which strategies for an AAC text entry system equipped with
word and sentence prediction functions can possibly improve text entry rates and keystroke savings
of letter-by-letter typing, and to understand whether the sentence prediction function has a positive
impact on entry rate.
We examine three conditions: (i) use word predictions only; (ii) use sentence predictions only;

and (iii) use mixed predictions.
Simulations of the full parameter set are conducted for different combinations of the text entry

strategy parameters: 𝐿𝑚𝑖𝑛_𝑤 ranging from 2 to 10, 𝑘𝑙𝑜𝑜𝑘_𝑤 from 0 to 5, 𝑝𝑚𝑎𝑥_𝑤 from 2 to 10, 𝐿𝑚𝑖𝑛_𝑠
from 2 to 10, 𝑘𝑙𝑜𝑜𝑘_𝑠 from 0 to 10, and 𝑝𝑚𝑎𝑥_𝑠 from 2 to 10. This combination covers a wide range of
possible text entry strategies. The envelope analyses reveal the following discoveries, which are
new findings in relation to prior work [23]:

Extensively using word predictions after typing a few letters increases text entry rate. In
condition (i), when only word prediction is involved, the system is considered equivalent to
a word predictive system. It reproduces a similar result to a previous study in using the able-
bodied surrogate user [23], such that word perseverance 𝑝𝑚𝑎𝑥_𝑤 has a limited influence on
entry rate when type-then-look 𝑘𝑙𝑜𝑜𝑘_𝑤 < 2. This is because with 71% current word prediction
accuracy and 58% next word prediction accuracy (i.e., 𝑃𝑝𝑟𝑒𝑑_𝑤_𝑐 = 0.71 and 𝑃𝑝𝑟𝑒𝑑_𝑤_𝑛 = 0.58
as listed in section 3.2), statistically, 92% words can be accurately predicted within the first
two letters if the word is at the start of a sentence (i.e., 0.71 + (1 − 0.71) × 0.71 = 0.92) and
96% of words can be accurately predicted within the first two letters if the word is not in the
beginning (i.e., 0.58 + (1− 0.58) × 0.71 + (1− 0.58) × (1− 0.71) × 0.71 = 0.96). However, when
𝑘𝑙𝑜𝑜𝑘_𝑤 > 3, 𝑝𝑚𝑎𝑥_𝑤 < 4 yields a higher net entry rate, which is not observed when using
the able-bodied surrogate user. This is because the marginal benefit from selecting expected
predictions decreases when the word approaches completion (after four letters are typed in
this case). Regular checking of predictions consumes more time for AAC users (i.e., a larger
𝑇𝑟𝑒𝑎𝑐𝑡 ), resulting in a faster decline compared to able-bodied users. Hence, we fix 𝑝𝑚𝑎𝑥_𝑤 = 2
and alter minimum word length 𝐿𝑚𝑖𝑛_𝑤 and type-then-look for word predictions 𝑘𝑙𝑜𝑜𝑘_𝑤 to
observe their effects on net entry rate. As shown in Figure 5a, the entry rate strongly depends
on the choice of these two parameters. The red hot colors with net entry rates above average
indicate when 𝑘𝑙𝑜𝑜𝑘_𝑤 < 2 and 𝐿𝑚𝑖𝑛_𝑤 is 3–5, the net entry rate reaches its maximum.

Sentence prediction strategy greatly impacts text entry rate. In condition (ii), the analysis of
sentence prediction shows that sentence perseverance 𝑝𝑚𝑎𝑥_𝑠 has little influence on the entry
rate when type-then-look 𝑘𝑙𝑜𝑜𝑘_𝑠 < 3, as the 82% of sentences are correctly predicted within
the first three words (i.e., 0.44 + (1 − 0.44) × 0.44 + (1 − 0.44)2 × 0.44 = 0.82). However, when
type-then-look 𝑘𝑙𝑜𝑜𝑘_𝑠 > 3, sentence perseverance 𝑝𝑚𝑎𝑥_𝑠 < 4 yields a higher net entry rate.
This is not observed with the able-bodied surrogate user either. We conjecture this is for the
same reason as for word prediction. Hence, we set 𝑝𝑚𝑎𝑥_𝑠 = 2 to investigate the impact of
𝐿𝑚𝑖𝑛_𝑠 and 𝑘𝑙𝑜𝑜𝑘_𝑠 on net entry rate. Figure 5b shows that when only the sentence prediction
function is available, when 𝐿𝑚𝑖𝑛_𝑠 is 4–6 and 𝑘𝑙𝑜𝑜𝑘_𝑠 < 1, this yields a high positive net entry
rate.

Word prediction and sentence prediction together improve text entry rate. The AAC
system allows users to adopt both word predictions and sentence predictions in tandem. To
understand whether the combined use of both prediction functions can still positively impact
the entry rate, in condition (iii), we alter the usage frequency of both the prediction functions
via changing 𝐿𝑚𝑖𝑛_𝑤 and 𝐿𝑚𝑖𝑛_𝑠 . Figure 5c shows that the combination of these two functions
yields a higher value range of net entry rate (from -0.01 to 9.6) than these two individual
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functions’ results shown in Figure 5a and Figure 5b (word prediction results from 0.02 to
4.5 wpm and sentence prediction from -1.4 to 8.6 wpm). In addition, frequently using the
word and sentence prediction functions after typing the initial few letters/words produces
high net entry rates.

Extensively using predictions decreases performance consistency. Figure 5d shows the net
entry rate standard deviation. The red hot color indicates a high standard deviation, and the
cool blue color represents a low standard deviation. A low value is preferred as it indicates a
more consistent level of performance. Extensive use of sentence prediction (i.e., small 𝐿𝑚𝑖𝑛_𝑠 )
yields a higher standard deviation.

Keystroke savings do not necessarily translate into positive net entry rates. Figure 5e
shows that text entry strategies that make extensive use of predictions (i.e., small 𝐿𝑚𝑖𝑛_𝑤 and
𝐿𝑚𝑖𝑛_𝑠 ) maximize the keystroke savings. However, this strategy yields a low net entry rate,
as shown in Figure 5c. In contrast, the strategies that yield medium keystroke savings have a
higher net entry rate (compare Figure 5c and 5e), which indicates that the keystroke savings
metric is not linearly correlated to net entry rate.

It is meaningful to design for individual users. By comparing Figure 5c and 5f, we observe
that by adopting the same text entry strategy, the AAC surrogate user yields a much lower
net text entry rate than the able-bodied surrogate user. This emphasizes that individual
differences can lead to very different performance outcomes. We also find that the optimal
strategies that yield the best net entry rate are actually different due to the difference between
the AAC surrogate user and the able-bodied surrogate user in terms of typing speed and
reaction time.

4 IMPERFECT SURROGATE USER MODEL KLM-BEI
This section introduces the imperfect surrogate user model KLM-BEI: a keystroke-level model
augmented by modeling bounded rationality, human errors, and interruptions. It is an extension
of the conventional task analysis model KLM. While conventional KLM is useful as a “cheap and
cheerful” initial estimation model, it is nonetheless a very simple model that can only approximately
predict the time cost of a task decomposed by unit tasks in a perfect context with no interruptions
of the task, using a single method, and assuming error-free expert performance, etc. [41].

However, actual AAC users are not always capable of achieving a goal in an optimal way as, in-
evitably, errors and interruptions occur which affect performance. To account for this, we introduce
the imperfect surrogate user model KLM-BEI to address these inherent uncertainties presented in
the task analysis. The model regards the user, the interactive system, and the environment as a joint
system that involves decision-making in the presence of action execution failures and interruptions
in the environment.
An overview of the model is illustrated in Figure 6. The system interaction simulator includes

three user action stages in turn: the decision-making action stage that correlates to the text entry
strategy (i.e. to select a word prediction or a sentence prediction or to type letter-by-letter) where
the system checks bounded rationality (i.e. to select the correct prediction or ignore), the keystroke
action stage where the system checks human error (i.e. to type the key correctly or not), and actual
keystroke action execution where the system calculates the time cost of the action using a model
reminiscent of KLM. Further, interruptions are monitored throughout the whole interaction process
and the time cost is also calculated by the model. It is worth mentioning that, in Figure 2, 3, and 4,
the teal rectangles with dashed lines are user actions that require human performance factor checks.

We now describe the rest of the key components of this model: (1) the bounded rationality model;
(2) the human error model; and (3) the interruption model. To ensure consistency, we illustrate
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Interruption Check

Check Human Factors

Decision Making 
Action

Bounded 
Rationality Check

Carry out KLM

Actual Keystroke 
Action Execution

Keystroke Action

Human Error 
Check

Start 
a user 
action 

End a 
user 

action 

Fig. 6. An overview of the imperfect surrogate user model KLM-BEI. This model incorporates uncertainties
into the KLM model, including bounded rationality, human error, and interruption. These specific models
will be introduced in Figure 7, 9, and 10, respectively. The three modules checking human performance are
highlighted by dashed-line boxes, which are aligned with user actions represented as teal rectangles with
dashed lines in Figures 2, 3, and 4. The correlated flowchart indicating simulation steps shows in Figure 13.

the impact of each model on net entry rates and changes in keystrokes by envelope analyses for
each condition and adopt the same selected sentences for simulation and the same system settings
introduced in Section 3.2.

4.1 Bounded Rationality Model
Models of goal-directed planning that take the expenses of computation into account are described
as models incorporating bounded rationality, a term coined by Herbert Simon [47] in behavioral
economics. People frequently engage in satisficing strategies where they follow a plan that is
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GoalOptimal 
Action

Irrational 
Action

Cognitive 
Processor

Upcoming 
Action

Extra 
Actions

Fig. 7. An overview of the bounded rationality model.

satisfactory, rather than optimal, within some constraints. We introduce a bounded rationality
model for envelope analysis to illustrate human decisions in a simple interaction task, such as
entering texts in a predictive system.
As shown in Figure 7, the simple goal-oriented task starts with an upcoming action. Then the

cognitive processor decides whether the surrogate user executes either an optimal (i.e. rational) or
an irrational action. This process is determined by the parameter rational rate (𝑅𝑟𝑎𝑡𝑖𝑜𝑛𝑎𝑙 ):

𝑅𝑟𝑎𝑡𝑖𝑜𝑛𝑎𝑙 = 1 − 𝑁𝑖𝑟𝑟𝑎𝑡𝑖𝑜𝑛𝑎𝑙

𝑁𝑒𝑟𝑟𝑜𝑟 𝑓 𝑟𝑒𝑒

(4)

where 𝑁𝑖𝑟𝑟𝑎𝑡𝑖𝑜𝑛𝑎𝑙 is the number of irrational actions and 𝑁𝑒𝑟𝑟𝑜𝑟 𝑓 𝑟𝑒𝑒 is all actions under an error-free
condition. A higher 𝑅𝑟𝑎𝑡𝑖𝑜𝑛𝑎𝑙 represents a higher rationality level of actions. An optimal action
brings the user to the goal directly, while an irrational action requires extra actions. For example,
assume the goal is to type the word ‘beautiful’ in the predictive text entry system and the user has
typed the letter ‘b’, and accordingly, the system presents the word prediction suggestion ‘beautiful’.
A rational action is to choose the word prediction suggestion to complete this entry, whereas an
irrational action is to type the next letter ‘e’, which still pursues the goal but demands several extra
keystrokes to complete the word. The extra actions are those actions followed by an irrational
action until the goal is achieved, regardless of whether the user chooses to engage with a word
prediction suggestion or to type letter-by-letter in subsequent keystrokes.

The comparison among Figure 8a–d shows that different bounded rationality levels can impact
the text entry rate due to the extra keystrokes. A higher rationality level (i.e., a higher 𝑅𝑟𝑎𝑡𝑖𝑜𝑛𝑎𝑙
value) leads to more efficient usage of the system utility and fewer extra keystrokes. Specifically,
Figure 5c (𝑅𝑟𝑎𝑡𝑖𝑜𝑛𝑎𝑙 = 100%), Figure 8a (𝑅𝑟𝑎𝑡𝑖𝑜𝑛𝑎𝑙 = 90%), and Figure 8b (𝑅𝑟𝑎𝑡𝑖𝑜𝑛𝑎𝑙 = 50%) show three
different distributions of net entry rate with respect to word and sentence entry strategies. In
general, surrogate users with lower rationality levels tend to produce lower text entry efficiencies.
In addition, the strategy parameter configurations that produce the fastest text entry rate can
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Image a) b) c) d)

Description
Net entry rate with 

90% rational 
operations

Net entry rate with 
50% rational 
operations

Extra keystrokes with 
90% rational 
operations

Extra keystrokes with 
50% rational 
operations

System 
Parameters 𝑃!"#$_&_' = 0.71, 𝑃!"#$_&_( = 0.58, and 𝑃!"#$_) = 0.44

User Parameters AAC surrogate user: 𝑇*#+ = 0.60 sec, 𝑇"#,'-_& = 1.20 sec, and 𝑇"#,'-_. = 6.61 sec

Human 
Performance 

Factors
Value

𝑅",-/0(,1 90% 50% 90% 50%

Strategy 
Parameters Value

𝐿2/(_& 2-10 2-10 2-10 2-10

𝑘100*_& 0 0 0 0

𝑝2,3_& 2 2 2 2

𝐿2/(_. 2-10 2-10 2-10 2-10

𝑘100*_. 0 0 0 0

𝑝2,3_. 2 2 2 2

a) b) c) d)

Fig. 8. The impact of bounded rationality and text entry strategies on typing efficiency in terms of net text
entry rate and extra keystrokes. Figure 8a shows that when 90% of the actions are rational, the optimal
strategy is to check predictions for words with lengths of three to five and sentences with lengths of four to
six, resulting in a net entry rate range between 7 and 9 wpm. Figure 8b shows that when 50% of the actions
are rational, the optimal strategy is to check predictions for words with lengths of three to four and sentences
with word lengths of four to seven, yielding a net entry rate range between 4 to 7 wpm. Figure 8c shows that
when 90% of the actions are rational, increasing the frequency of word and sentence prediction usage leads
to higher extra keystrokes, with a maximum of two extra keystrokes. Finally, Figure 8d shows a similar trend
but with a higher maximum number of eight extra keystrokes.

change under different rationality conditions. In other words, a user’s optimal strategy may change
depending on the user’s level of rationality.

4.2 Human Error Model
Erroneous behavior is an inherent part of human performance [41]. Although there are many
different ways to categorize error types such as slips, knowledge-based mistakes, rule-based
mistakes, etc. [16, 32, 39], these errors share the same attributes: task execution deviates from the
goal. In this study, we assume errors can be spotted during the sentence entry task, and a set of
correcting actions are executed once the error is observed. As illustrated in Figure 9, the task starts
with an upcoming action. The motor processor decides whether the surrogate user executes either
an expected or unexpected action. An expected action results in accomplishing the goal, while
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GoalExpected 
Action
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Processor
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Action
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Fig. 9. An overview of the human error model.

GoalExecute 
the Action

Interruption

Interruption 
Trigger

Upcoming 
Action

Resume 
the Action

Off

On

Fig. 10. An overview of the interruption model.

an unexpected action requires a set of corrective steps, which requires additional actions. In a
predictive text entry system, unexpected actions include typing unexpected letters or selecting an
unwanted word or sentence suggestion.
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Image a) b) c) d)

Description
Net entry rate with 

10% erroneous 
operations

Net entry rate with 
50% erroneous 

operations

Corrective keystrokes 
with 10% erroneous 

operations

Corrective keystrokes 
with 50% erroneous 

operations

System 
Parameters 𝑃!"#$_&_' = 0.71, 𝑃!"#$_&_( = 0.58, and 𝑃!"#$_) = 0.44

User Parameters AAC surrogate user: 𝑇*#+ = 0.60 sec, 𝑇"#,'-_& = 1.20 sec, and 𝑇"#,'-_. = 6.61 sec

Human 
Performance 

Factors
Value

𝑅#""/" 10% 50% 10% 50%

Strategy 
Parameters Value

𝐿01(_& 2-10 2-10 2-10 2-10

𝑘2//*_& 0 0 0 0

𝑝0,3_& 2 2 2 2

𝐿01(_. 2-10 2-10 2-10 2-10

𝑘2//*_. 0 0 0 0

𝑝0,3_. 2 2 2 2

a) b) c) d)

Fig. 11. The impact of human error and text entry strategies on typing efficiency (the net text entry rate
and the corrective keystrokes). Figure 10a shows that when 10% of the actions are erroneous, the optimal
strategy is to check predictions for words with lengths of three to four and sentences with lengths of four to
five, resulting in a net entry rate range between 5 and 7 wpm. Figure 10b shows that when 50% of the actions
are erroneous, the optimal strategy is to check predictions for sentences with word lengths less than five,
yielding a net entry rate between -1 to 1 wpm, while word prediction has limited impact in this case. Figure
10c shows that when 10% of the actions are erroneous, increasing the frequency of sentence prediction usage
leads to more corrective keystrokes, with a maximum of five corrective keystrokes. Finally, Figure 10d shows
a similar trend but with a higher maximum number of 19 corrective keystrokes.

We define the human error rate (𝑅𝑒𝑟𝑟𝑜𝑟 ) to interpret the possibility of an action being erroneous:

𝑅𝑒𝑟𝑟𝑜𝑟 =
𝑁𝑢𝑛𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑

𝑁𝑡𝑜𝑡𝑎𝑙

(5)

where 𝑁𝑢𝑛𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 is the keystroke number of unexpected actions and 𝑁𝑡𝑜𝑡𝑎𝑙 is the overall keystrokes.
A lower 𝑅𝑒𝑟𝑟𝑜𝑟 represents higher user expertise in using the system.

We investigate the impact of human error on typing efficiency via two sets of parameters with
different 𝑅𝑒𝑟𝑟𝑜𝑟 . Comparing Figure 5c (𝑅𝑒𝑟𝑟𝑜𝑟 = 0) and Figure 11a (𝑅𝑒𝑟𝑟𝑜𝑟 = 10%), it is obvious
that human error greatly constrains the net entry rate, even with only 10% erroneous operations.
The comparison between Figure 11a (𝑅𝑒𝑟𝑟𝑜𝑟 = 10%) and Figure 11b (𝑅𝑒𝑟𝑟𝑜𝑟 = 50%) shows that a
high error rate can not only lead to a very different optimal typing strategy (i.e., the hot red area
indicating the relatively high entry rate changes the distribution) but also dramatically decrease
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Image a) b) c) d)

Description

Net entry rate with 10% 
interruption rate and a 
5-second interruption 

event

Net entry rate with 50% 
interruption rate and a 
5-second interruption 

event

Net entry rate with 10% 
interruption rate and a 
50-second interruption 

event

Net entry rate with 50% 
interruption rate and a 
50-second interruption 

event

System 
Parameters 𝑃!"#$_&_' = 0.71, 𝑃!"#$_&_( = 0.58, and 𝑃!"#$_) = 0.44

User 
Parameters AAC surrogate user: 𝑇*#+ = 0.60 sec, 𝑇"#,'-_& = 1.20 sec, and 𝑇"#,'-_. = 6.61 sec

Human 
Performance 

Factors
Value

𝑇#/#(- 5 seconds 50 seconds

𝑅0(-#""1!- 10% 50% 10% 50%

Strategy 
Parameters Value

𝐿20(_& 2-10 2-10 2-10 2-10

𝑘344*_& 0 0 0 0

𝑝2,5_& 2 2 2 2

𝐿20(_. 2-10 2-10 2-10 2-10

𝑘344*_. 0 0 0 0

𝑝2,5_. 2 2 2 2

a) b) c) d)

Fig. 12. The impact of interruption and text entry strategies on the net text entry rate. Figure 12a shows that
with a 10% interruption rate and a five-second interruption event, the optimal strategy is to check predictions
for words with lengths of three to seven and sentences with lengths of four to six, resulting in a net entry rate
range between 6 and 8 wpm. Figure 12b shows that when we have a 50% interruption rate and a five-second
interruption event, the optimal strategy is to check predictions for words with lengths of three to six and
sentences with word lengths of four to six, yielding a net entry rate range between 5 and 8 wpm. Figure 12c
shows that with a 10% interruption rate and a 50-second interruption event, the optimal strategy is to check
predictions for words with lengths of three to seven and sentences with word lengths of four to six, resulting
in a net entry rate range between 5 and 7 wpm. Figure 12d shows that when we have a 50% interruption rate
and a 50-second interruption event, the optimal strategy is to check predictions for words with lengths of
three to six and sentences with word lengths of four to six, yielding a net entry rate range between 4 and 6
wpm.

the text entry rate as the maximum net entry rate in Figure 11b is 1.7 wpm, less than 7.7 wpm in
Figure 11a. Figure 11c–d reveals that the reason behind this phenomenon is that the high human
error rate leads to more corrective keystrokes in general. In addition, the highly frequent use of
sentence prediction functions (i.e., a smaller 𝐿𝑚𝑖𝑛_𝑠 value) minimizes the corrective keystrokes,
while the use of word prediction functions has a limited impact on the corrective keystrokes.
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4.3 Interruption Model
Interruption is one of the important human performance factors that forces users to pause their
tasks. We propose a simple model allowing systems to auto-detect interruption events. Figure 10
illustrates this concept, starting with an upcoming action. Thereafter an interruption event that
suspends this action may be triggered, determined by the interruption trigger. If the interruption
trigger is off then there are no interruptions, and the user executes the action normally. If the
interruption trigger is on then the user requires extra time to resume the action after they react to
the interrupting event. This resumption time (𝑇𝑖𝑛𝑡𝑒𝑟𝑟𝑢𝑝𝑡 ) is considered the cost of the interruption. In
addition, we assume that the interruption happens at most once in one sentence entering process for
simplicity. Interruption rate (𝑅𝑖𝑛𝑡𝑒𝑟𝑟𝑢𝑝𝑡 ), ranging from 0 to 100%, is used to determine the possibility
of activating the trigger, which is defined by the equation:

𝑅𝑖𝑛𝑡𝑒𝑟𝑟𝑢𝑝𝑡 =


𝑁𝑖𝑛𝑡𝑒𝑟𝑟𝑢𝑝𝑡

𝑁𝑠𝑒𝑛𝑡𝑒𝑛𝑐𝑒

If no interruption has happened
during current sentence entry

0
If there has been an interruption
during the current sentence entry

(6)

where 𝑁𝑖𝑛𝑡𝑒𝑟𝑟𝑢𝑝𝑡 is the number of interruptions in all sentences and 𝑁𝑠𝑒𝑛𝑡𝑒𝑛𝑐𝑒 is the number of
sentences.

Hodgetts and Jones. [15] indicate that a longer interruption requires a higher cost for retrieving
goal memory, leading to a slower resumption. The motivation to investigate the interruption is that
a well-designed user interface is supposed to assist this memory retrieval process and reduce the
cognitive load. In other words, the task resumption cost can be regarded as one of the indicators for
evaluating an interaction design. Monk et al. [31] find a logarithmic model that fits the correlation
of the interrupting event time and the resumption time when the interruption duration is within
60 seconds:

𝑇𝑖𝑛𝑡𝑒𝑟𝑟𝑢𝑝𝑡 = 0.189 × log(𝑇𝑒𝑣𝑒𝑛𝑡 ) + 1.03 (7)
where 𝑇𝑒𝑣𝑒𝑛𝑡 is less than 60 seconds, and the constants may vary to fit different settings better.

As shown in Figure 12, we set four conditions with different interruption frequencies and
interruption durations to understand their impact on the net text entry rate.
The distributions of net entry rates in the four sub-figures share a similar pattern to the result

from an ideal setting shown in Figure 5c (𝑅𝑖𝑛𝑡𝑒𝑟𝑟𝑢𝑝𝑡 = 0). High net entry rates gather at a strategy
range of relatively high frequent use of the word and sentence predictions (𝐿𝑚𝑖𝑛_𝑤 > 2 and 𝐿𝑚𝑖𝑛_𝑠
is 4–8). However, the range of the net entry rate differs in different settings. The comparisons
between Figure 12a, 12b and Figure 12c, 12d show that a higher interruption rate (higher 𝑅𝑖𝑛𝑡𝑒𝑟𝑟𝑢𝑝𝑡 )
leads to a lower net entry rate. In addition, a longer interruption event tends to have a more severe
impact on entry rate when the interruption rate is high.

4.4 The KLM-BEI Model
The KLM-BEI model is a wrapped-up model of the three fore-mentioned human performance
factors: bounded rationality, human error, and interruption. Based on Figure 6, 7, 9, and 10, Figure 13
illustrates the workflow of this combined model that continuously checks the three aspects during
the whole interaction process. To understand the resistance of the system with a fixed text entry
strategy (i.e., to what extent the system can keep improving text entry rate when taking human
performance factors into account), we allocate a set of optimal text entry strategy parameters
and alter the rational rate (𝑅𝑟𝑎𝑡𝑖𝑜𝑛𝑎𝑙 ) and the error rate (𝑅𝑒𝑟𝑟𝑜𝑟 ). However, note that we fix the
interruption parameters (𝑅𝑖𝑛𝑡𝑒𝑟𝑢𝑝𝑡 = 10% and 𝑇𝑒𝑣𝑒𝑛𝑡 = 5𝑠𝑒𝑐) and optimal text entry strategy
parameters (𝐿𝑚𝑖𝑛_𝑤 = 4, 𝑘𝑙𝑜𝑜𝑘_𝑤 = 0, 𝑝𝑚𝑎𝑥_𝑤 = 2, 𝐿𝑚𝑖𝑛_𝑠 = 5, 𝑘𝑙𝑜𝑜𝑘_𝑠 = 0 and 𝑝𝑚𝑎𝑥_𝑠 = 2).
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Is the current 
action 

rational?

Is it an 
erroneous 

action?

Type the 
next letter

What is the 
rational 
action?

NO

YES

To type a word without prediction

To select a sentence prediction

To select a 
word prediction

−𝑇!"#$%_'

−𝑇!"#$%_(

Press a 
wrong key

YES Delete the 
wrong entry

+𝑇)"*

What is 
the wrong 

entry?

Press the next expected 
key; or execute the 
expected action.*

A word prediction A letter

NO

+𝑇)"*×𝐿+!!","-#.%_,"%%"!'

A sentence 
prediction

+𝑇)"*×𝐿+!!","-#.%_,"%%"!'

Is the 
goal** 

achieved?

+𝑇)"* or	+𝑇!"#$%

NO

YES

+𝑇)"*

Check human factors

Fig. 13. The flowchart of Check Human Performance Factors Model. (*): This could be a corrective action,
which means the actual executed action is based on the type of correction the user is carrying out. (**): The
goal refers to the goal in the bounded rationality model (Figure 7) and human error model (Figure 9).

Figure 14a shows that, as expected, the highest net entry rate is achieved with a maximum rational
rate (𝑅𝑟𝑎𝑡𝑖𝑜𝑛𝑎𝑙 = 100%) and a minimum human error rate (𝑅𝑒𝑟𝑟𝑜𝑟 = 0). The steep zero-crossing line
in this figure indicates that 𝑅𝑒𝑟𝑟𝑜𝑟 exerts more influence on the net entry rate than 𝑅𝑟𝑎𝑡𝑖𝑜𝑛𝑎𝑙 , as
when 𝑅𝑒𝑟𝑟𝑜𝑟 > 60%, the net entry rate cannot possibly have a positive value. On the one hand,
this implies that regardless of the efficiency of the prediction function, once the human error rate
remains at a high level, it is very difficult to increase the entry rate through the text prediction
algorithms. Instead, a better design direction would be to improve the user experience to reduce the
human error rate. On the other hand, it also reveals that bounded rationality has a relatively lower
impact on the entry rate than human error. Within the full range of 𝑅𝑟𝑎𝑡𝑖𝑜𝑛𝑎𝑙 , the net entry rate
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Image a) b)

Description

Net entry rate of 
optimal text entry 

strategy with respect to 
the full range of 

𝑅!"#$%&"'  and 𝑅(!!%!

Keystroke saving of 
optimal text entry 

strategy with respect 
to the full range of 
𝑅!"#$%&"'  and 𝑅(!!%!

System 
Parameters

𝑃)!(*_,_- = 0.71, 𝑃)!(*_,_& = 0.58, and 
𝑃)!(*_. = 0.44 

User 
Parameters

AAC surrogate user: 
𝑇/(0 = 0.60 sec, 𝑇!("-#_, = 1.20 sec, 

and 𝑇!("-#_1 = 6.16 𝑠𝑒𝑐
and 𝑇$&#(!!2)# = 0.189× log 𝑇(3(&# + 1.03 sec

Strategy 
Parameters

𝐿4$&_,  = 4, 𝑘'%%/_,  = 0, 𝑝4"5_,  = 2,
𝐿4$&_1 = 5, 𝑘'%%/_1 = 0, 𝑝4"5_1 = 2

Human 
Performance  

Factors
Value

𝑇(3(&# 5 seconds 5 seconds

𝑅$&#(!!2)# 10% 10%

𝑅!"#$%&"' 0-100% 0-100%

𝑅(!!%! 0-100% 0-100%

b)a)

Fig. 14. Human performance factors evaluation with optimal text entry strategy. The black dashed line
makes the zero-crossing, above which predictions provide a performance gain.

can achieve a positive value if the human error rate is well managed. Figure 14b observes a similar
result that the keystroke savings can only be positive when 𝑅𝑒𝑟𝑟𝑜𝑟 < 40%. Further, with a higher
rationality rate, the system has a higher tolerance to human errors in terms of saving keystrokes.

Having first simulated an imperfect surrogate user by fixing the human performance factors we
now investigate the impact of using a different text entry strategy on performance. Specifically, we
investigate the text entry rate and keystroke savings. The table in Figure 15 shows the parameter
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a) b)

Image a) b)

Description Net entry rate of the 
imperfect surrogate user

Keystroke saving
of the imperfect 
surrogate user

System 
Parameters

𝑃!"#$_&_' = 0.71, 𝑃!"#$_&_( = 0.58, 
and 𝑃!"#$_) = 0.44

User 
Parameters

AAC surrogate user: 
𝑇*#+ = 0.60 sec, 𝑇"#,'-_& = 1.20 sec, 

and 𝑇"#,'-_. = 6.61 sec

Human 
Performance 

Factors

𝑅",-/0(,1 = 90%, 𝑅#""0" = 10%, 
𝑅/(-#""2!- = 50%, and 𝑇#3#(- = 5 𝑠𝑒𝑐

Strategy 
Parameters Value

𝐿4/(_& 2-10 2-10

𝑘100*_& 0 0

𝑝4,5_& 2 2

𝐿4/(_. 2-10 2-10

𝑘100*_. 0 0

𝑝4,5_. 2 2

a) b)

Fig. 15. Imperfect user simulation with fixed human performance factors. Figure 15a shows that when
considering all the impacts of listed human performance factors, the optimal strategy is to check predictions
for words with lengths of three to four and sentences with word lengths of four to five, resulting in a net entry
rate range between 3 and 5 wpm. Figure 12b shows that in this setting, relying more on word and sentence
predictions leads to higher keystroke savings, with a maximum keystroke saving of 61%.

configurations for the envelope analysis. The plots suggest that human performance factors have a
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Participant Word Prediction Sentence Prediction

1
Check for long words (more than 5 
letters) after typing 5 letters and keep 
checking until select or no predictions.

Check for long sentences (more than 5-6 
words) after typing 2-3 words and keep 
checking until select or no predictions.

2

Check for long words (more than 5 
letters) after typing 1-2 letters and keep 
checking until select or no predictions, 
also check for words in phrases after 
finishing the previous word. 

Check for medium and long sentences (more 
than 4-5 words) after typing 1-2 words and 
keep checking until select or no predictions.

3
Check for long words (more than 5 
letters) after typing 3 letters and keep 
checking until select or no predictions.

Check for medium and long sentences (more 
than 4-5 words) after typing 3 words and keep 
checking until select or no predictions.

4 Only check once. Never check.

5
Check for all words longer than 2 
letters after typing 2 letters and keep 
checking until select or no predictions.

Check for all sentences longer than 2 words 
after typing 2 words and keep checking until 
select or no predictions.

6

Check for words in phrases after typing 
2-3 letters and keep checking until 
select or no predictions, regardless the 
word length. Type other words letter-
by-letter. 

Check for every sentence regardless the 
length after typing 1 word and keep checking 
until select or no predictions. 

7

Check for every wrods after typing 1 
letter and keep checking until select or 
no predictions, but type letter-by-letter 
for long words and names.

Check for every sentence regardless the 
length after typing 2 words and keep checking 
until select or no predictions. 

8

Check for long words (more than 5 
letters) after typing 3 letters and keep 
checking until select or no prediction, 
also check for words in phrases after 
finishing the previous word. 

Check for long sentences (more than 5 words) 
after typing 3-4 words and keep checking 
until select or no predictions.

Table 2. Descriptions of the eight participants’ text entry strategies. These overall strategies are extracted
based on our interviews with them and from inspecting log files. In the text entry tasks the participants
tended to exhibit a consistent overall performance, but at a sentence level, they may have adopted flexible
strategies to suit their needs.

significant impact on performance. Compared to the perfect user (oracle) simulation (see Figure 5c
and 5e), the simulation of the imperfect surrogate user (see Figure 15a and 15b) demonstrates a
notably lower maximum net entry rate and keystroke savings and a smaller range of text entry
strategy parameters that produce positive net entry rates.

5 RUNTIME ESTIMATION OF PARAMETERS AND VALIDITY
A natural question to ask is how to validate the overall model. However, since the model is
generative by definition, it creates all conceivable operating points given a particular parameter
configuration [21, 23]. Thus, assuming the parameter interactions are valid, if the parameters are
accurate, then the correct corresponding possible operating points will be generated.
Therefore, a more meaningful and practical question is how to estimate such parameter values

by observing the runtime behavior of the joint human-computer system during use. Providing
such a function allows designers to rapidly estimate appropriate parameter values, which can then
subsequently be used in envelope analysis.
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Participant 1 2 3 4 5 6 7 8

𝑇!"# (sec) 0.25 0.32 0.27 0.34 0.26 0.27 0.35 0.51

𝑇$"%&'_)
(sec) 0.75 0.77 0.98 n/a 0.88 0.65 1.00 0.61

𝑇$"%&'_*
(sec) 2.18 1.18 0.87 n/a 1.61 n/a 1.73 1.21

𝑅"$$+$ (%) 9.1 2.9 6.0 8.5 17.8 2.0 2.3 5.3

𝑅,$$%',+-%.
(%) 86.3 87.8 88.8 86.5 86.8 91.5 89.1 90.3

𝑅,-'"$$/0'
(%) 102.1 107.0 88.2 75.3 126.1 96.9 122.8 98.0

𝑇,-'"$$/0'
(sec) 3.92 3.20 3.84 3.65 4.48 3.80 4.11 4.00

𝐸𝑛𝑡𝑟𝑦 𝑅𝑎𝑡𝑒
(WPM) 27.14 24.74 23.69 21.49 20.57 12.75 16.80 15.70

𝐾𝑒𝑦𝑠𝑡𝑟𝑜𝑘𝑒
𝑆𝑎𝑣𝑖𝑛𝑔 (%) 13.0 1.2 -8.5 -30.4 -56.7 -103.1 -71.6 -91.5

Table 3. Real user parameters extracted from the eight participants using KLM-BEI.

In contrast to prior work [21, 23], we have developed a runtime parameter estimation function in
our system. The user freely types sentences, and by observing the behavior of the joint system, our
system automatically estimates parameter values. When the user has typed a complete sentence,
the goal of the user is assumed to be to arrive at that sentence. Thus, the system can estimate the
parameters on a sentence frequency basis.
Erroneous actions can be estimated by examining deletion actions. Since they relate to text

correction, erroneous actions can be estimated as the actions that the user took to input text that
ended up being deleted text.

Irrational actions can be estimated by examining any additional actions taken by the user to type
the text that could have been avoided had the user noticed and used any suitable text prediction
suggestions that were provided by the system.
We estimate interruption time by assessing whether the user’s reaction time is longer than the

time we expect the user to need to type the next key. This is achieved by examining the time
interval between two subsequent actions. If the interval is longer than the keystroke typing time
and the time required to assess text prediction suggestions, then we consider an interruption event
to have occurred. We then calculate the interruption time as the time between the start of the
user’s interruption and the time when they resume their typing task. In envelope analyses, we can
estimate the resumption time (i.e., the interruption cost) by using Equation 7, as it, along with the
interruption event time, adds up to the total interruption time.

5.1 Validity
We have two goals for validating the KLM-BEI model. First, to validate that the KLM-BEI model can
be used to extract parameters that are affected by human performance factors at runtime, such as
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Image a) b) c) d)

System Parameters 𝑃!"#$_&_' = 0.71, 𝑃!"#$_&_( = 0.58, and 𝑃!"#$_) = 0.44

Real User 
Parameters 𝑇*#+ = 0.25 sec, 𝑇"#,'-_& = 0.75 sec, and 𝑇"#,'-_. = 2.18 sec

Extracted Human 
Performance 

Factors
𝑅",-/0(,1 = 86.3%, 𝑅#""0" = 9.1%, 𝑅/(-#""2!- = 102.0%, and 𝑇#3#(- = 3.92 sec

Extracted Strategy 
Parameters 𝐿4/(_& = 5, 𝑘100*_& = 5, 𝑝4,5_& = 6, 𝐿4/(_. = 5, 𝑘100*_. = 2, 𝑝4,5_. = 6

Real User 
Performance Real entry rate: 27.1 wpm; Real keystroke saving: 13.5%

Varibles for 
Envelope Analyses 𝐿4/(_&: 2-10; 𝐿4/(_.: 2-10

a) Entry rate in KLM-BEI b) Keystroke saving in 
KLM-BEI

c) Entry rate in KLM d) Keystroke saving in 
KLM

𝐸𝑅 = 25 𝑤𝑝𝑚 𝐾𝑆 = 22% 𝐾𝑆 = 42%𝐸𝑅 = 48 𝑤𝑝𝑚

Fig. 16. Entry rate (ER) and keystroke savings (KS) estimations via the imperfect surrogate user model KLM-BEI
and the conventional model KLM using real human performance factors extracted from Participant 1. Figure
17a shows that when using Participant 1’s text entry parameters and human performance factors (i.e., using
the KLM-BEI model), the optimal strategy is to check predictions for words with lengths larger than six and
sentences with word lengths of five to eight, resulting in a net entry rate range between 25 and 27 wpm.
Figure 17b shows that in this setting, relying more on word and sentence predictions leads to higher keystroke
savings, with a maximum keystroke saving of 35%. Further, Figure 17c shows that when only considering
Participant 1’s text entry parameters but ignoring human performance factors (i.e., using the KLM model),
the optimal strategy is to check predictions for words with lengths larger than six and sentences with word
lengths of five to eight, resulting in a net entry rate range between 50 and 55 wpm. Figure 17d shows that
in this setting, relying more on word and sentence predictions leads to higher keystroke savings, with a
maximum keystroke saving of 51%. Purple circles reflect the estimated entry rate and keystroke savings in
different models with respect to the overall text entry strategy adopted by Participant 1, which shows that
KLM-BEI can better reflect reality than KLM.

𝑅𝑟𝑎𝑡𝑖𝑜𝑛𝑎𝑙 , 𝑅𝑒𝑟𝑟𝑜𝑟 , 𝑅𝑖𝑛𝑡𝑒𝑟𝑟𝑢𝑝𝑡 , and 𝑇𝑖𝑛𝑡𝑒𝑟𝑟𝑢𝑝𝑡 . Second, to validate that by adopting the proposed KLM-
BEI model, envelope analyses can produce more accurate estimations than a previous approach [23]
for individual users with the aid of light touch data collection. To achieve these goals, we recruited
eight participants by convenience sampling. The participants were literate able-bodied users aged
20–35 and had at least three years of experience in using text entry systems on touchscreen devices.
The reason for not recruiting AAC users is that the experiment aimed to validate that the KLM-BEI
model can be used for understanding user performance which assists the system design, rather
than directly analyzing user performance for a specific system design. Accordingly, participants
were asked to type 100 sentences on an AAC text entry system assisted with word and sentence
prediction functions [56] installed on a touchscreen tablet PC (Dell XPS 13 2-in-1 tablet with 13"
3:2 3K (2880x1920) touchscreen).
The text entry performance was logged and analyzed via the KLM-BEI model built into the

AAC system. The recording is a text file in which the time of each user action, the pressed key,
the predicted words and sentences, and the displayed text was logged for calculating text entry
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rate and keystroke savings. In addition, rational rate (𝑅𝑟𝑎𝑡𝑖𝑜𝑛𝑎𝑙 ), error rate (𝑅𝑒𝑟𝑟𝑜𝑟 ), interruption rate
(𝑅𝑖𝑛𝑡𝑒𝑟𝑟𝑢𝑝𝑡 ), and interruption time (𝑇𝑒𝑣𝑒𝑛𝑡 ) were also extracted from this log.

The same sentences described in Section 3.2 were reused, which were randomly selected from a
crowdsourced AAC-like communications dataset [49]. Ten additional sentences were randomly
selected from the dataset and provided to the participants to allow them to familiarize themselves
with the word prediction and the sentence prediction functions of the system.

Participants were told to type freely during the text entry task (that is, not given instructions
about text entry strategies for using predictions) and invited to a short interview about the text
entry strategy the participant adopted after the task. Table 2 shows descriptions of the text entry
strategies the eight participants adopted.
We observed three main types of text entry strategies. The first type used a mix of word and

sentence predictions. For example, Participant 2, 3, and 8 relied extensively on the predictions for
long words and/or words in phrases, and medium and long sentences. Further, Participant 5 and 7
actively used word and sentence predictions for almost every word and sentence. The second type
mainly used sentence predictions. For example, Participant 1 used predictions for long sentences
and only checked word prediction when they realized they were typing a long word. Participant 6
strongly depended on sentence prediction but only checked word predictions when they felt the
system could accurately predict them. The third type did not use any prediction functions, such as
Participant 4 who was almost completely reliant on letter-by-letter entry.

Table 3 shows that the KLM-BEI model can identify parameters that are affected by three types
of human performance factors and extract user parameters based on the interaction log. These
parameters are then applied back to the proposed KLM-BEI model and the conventional KLM
model for envelope analyses. The results reveal a substantial improvement in that the new model’s
envelope analyses yield a more accurate text entry performance estimation in text entry rate and
keystroke savings than using the conventional model. Figure 16 is an example of using parameters
extracted from Participant 1 for envelope analyses. The correlated actual text entry strategy of
Participant 1 is highlighted in purple circles in Figure 16a–d. By comparing Figure 16a and c, and
Figure 16b and d with the real user text entry rate and keystroke savings, the envelope analyses
using KLM-BEI demonstrate a substantial improvement of estimations (for example, entry rate is
25 wpm and the keystroke savings is 22%) that are closer to actual measurements (for example,
entry rate is 27 wpm and the keystroke savings is 14%). The prior analysis overestimated the entry
rate and keystroke savings (for example, 48 wpm for entry rate and 42% for keystroke savings). The
other participants’ resulting simulations using real user parameters share similar improvements.
That is, the KLM-BEI-assisted envelope analysis yielded more accurate estimations.

6 DISCUSSION AND CONCLUSIONS
The rapid development of large language models (LLMs), such as ChatGPT, brings great opportuni-
ties to predictive AAC text entry system design for users with motor disabilities. However, such
systems also introduce many complexities that make it difficult for designers to know a priori how
to set parameters at appropriate values, such as the number of word and sentence suggestions, and
understand what the requirements are on various subsystems, such as the accuracy required for
word auto-complete. As system complexity increases, it is not viable to solely rely on the traditional
use of text entry experiments, as such experiments can only test a few operating points. Further,
some parameters that govern the joint human-system outcomes (entry rates, error rates, keystroke
savings, and so on) are latent in the sense that they are directly connected to user strategies in,
for example, leveraging word and sentence suggestions. Since we cannot directly control user
strategies in experiments, we need to simulate various outcomes to assess which operating points
our NLG-based AAC text entry systems may realize.
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This paper contributes to this line of work by presenting the imperfect surrogate user model,
KLM-BEI, which we use to generate performance envelopes across a wide range of parameters and
strategies, and to extract user parameters from actual text entry. We extend prior work in using
design engineering methods for text entry design [21, 23] by (1) analyzing an AAC text entry system
assisted by word and sentence prediction functions; (2) incorporating human performance factors
into the computational model to allow for analysis of imperfect user behavior (bounded rationality,
human error, and interruption modeling); and (3) demonstrating a method for estimating parameter
values for the model at runtime by analyzing user behavior.

We hope this work will stimulate further research. In particular, we see five particularly promising
avenues of future work: (1) to explore alternative system parameters and user parameters, such
as different prediction parameters and timings; (2) to study if this model could also be useful to
inform mobile text entry design for able-bodied users; (3) to develop design tools that allow text
entry designers to easily explore a wide range of text entry designs using the model in this paper
and future work; (4) to investigate model refinements that take into account text entry systems
that adapt to users’ text entry activities; and (5) to examine the efficacy of the model in text entry
design for particularly challenging areas of text entry, such as mid-air text entry in virtual and
augmented reality and augmentative and alternative communication.

7 OPEN SCIENCE
The source code for the KLM-BEI simulation is available as supplementary material.
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A PARAMETERS AND DESCRIPTIONS

Parameter Description Parameter Description

𝑃!"#$_&_' The current word prediction accuracy 𝐿()*_&
The minimum word length for 
checking word predictions

𝑃!"#$_&_* The next word prediction accuracy 𝑘+,,-_& Type-then-look for word predictions

𝑃!"#$_. The sentence prediction accuracy 𝑝(/0_& Perseverance for word predictions

𝑇-#1
The time duration between two continuous 
keystrokes 𝐿()*_.

The minimum sentence length for 
checking sentence predictions

𝑇"#/'2_&
The time duration for user to check word 
prediction list 𝑘+,,-_.

Type-then-look for sentence 
predictions

𝑇"#/'2_.
The time duration for user to check sentence 
prediction list 𝑝(/0_. Perseverance for sentence predictions

𝑅"/2),*/+
Rational rate, the possibility of the user to 
execute a rational action

𝑅#"","
Human error rate, the possibility of the user to 
execute an erroneous action

𝑅)*2#""3!2
Interruption rate, the possibility of an 
interruption occurs while typing a sentence

𝑇)*2#""3!2 The interruption duration

Table 4. A list of 16 parameters used for envelope analyses in this paper. The parameters shaded in light blue
are system parameters defining prediction accuracy. The ones shaded in light yellow are user parameters for
the time duration of typing and checking predictions. The ones shaded in light orange are text entry strategy
parameters. These three types of parameters are used for both KLM and KLM-BEI. The remaining parameters
shaded by light green are used for KLM-BEI only, which are human factors-related, indicating the possibility
that each type of human factor may occur during the interaction.
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