
Tinkerable Augmentative and Alternative

Communication for Users and Researchers

Boyin Yang and Per Ola Kristensson, University of Cambridge

Abstract: Augmentative and alternative communication (AAC) users are highly
diverse as their communication needs depend on many factors, such as motor abil-
ity, cognition, age, education level, and overall preferences. This chapter introduces
the concept of tinkerability for AAC. We conjecture that Tinkerable AAC (TAAC)
has the potential to empower AAC users, developers, and researchers to fine-tune,
adapt, and explore better communication solutions in tandem with the system. We
present a framework for tinkerable AAC that concretely links qualities of a tinker-
able AAC system to AAC research and development research areas and subareas.
To demonstrate the viability of tinkerable AAC, we present a tinkerable predictive
text entry system for AAC. It allows users to adjust many aspects of the system
during use, ranging from the text prediction algorithms in the back end to the pa-
rameters underpinning the keyboard layout in the front end. In addition, it also al-
lows AAC system developers to adopt state-of-the-art language models and enables
AAC researchers to carry out in-situ research experiments. We discuss the design
space opened up by tinkerable AAC and its potential in empowering the AAC com-
munity to co-design individually tailored AAC solutions for users.

1 Introduction

Tinkering is an exploratory and iterative style of working where a user engages
with a problem or a project. It is regarded as the opposite of planning, which is a
more organized activity that is more direct but not repetitious (Resnick and
Rosenbaum 2013).

Tailoring is an activity that modifies a system to fit specific use situations. It is
distinct from use, as use refers to modifications made to the subject matter of the
tool while tailoring refers to modifications of the tool itself. While use can give
rise to an immediate perceived effect, the effect of tailoring is felt at a later stage
(Henderson and Kyng 1995).

In this paper we suggest tinkerability to be the ability of a system to let it be
modified during interaction to fit different use scenarios and conditions required

2

for users to reach specific goals, such as gaining higher efficiency. The modifica-
tions are not necessarily executed by the user directly as we envision that they can
also be achieved by the assistance of AAC specialists, developers, and researchers.

We see many reasons why thinking about tinkerability in AAC is a promising
research direction. First, AAC users form a very heterogeneous user group and, as
a consequence, individual preferences, capabilities, needs, and resources vary sub-
stantially. Allowing AAC users, specialists, and researchers to tinker with AAC
systems provide opportunities to fine-tune systems for individuals.

Second, despite decades of research, AAC solutions are still suboptimal. Tinker-
ability encourages exploration and may serve two purposes: (1) increasing peo-
ple’s interest in improving AAC systems by explicitly observing the capabilities
of sophisticated AAC systems; and (2) assisting AAC designers, developers, and
researchers in eliciting user requirements by empowering AAC users to further
understand the capabilities and limitations of the systems they rely on.

Third, AAC systems relying on natural language processing and machine learn-
ing are becoming increasingly complex. Tinkerable AAC may help AAC design-
ers and researchers in understanding the increasing design space of AAC systems
that has emerged due to the tremendous progress in artificial intelligence. By let-
ting AAC designers experiment with AAC systems, tinkerable AAC allows them
to observe potential benefits from such advancements first hand, thereby tinkera-
ble AAC has the potential to empower both AAC users and professionals, stimu-
lating new ideas and new formulations of design problems in AAC.

Thus, tinkerable AAC is a potential enabling technology, allowing non-experts
in AI to create new futures within a broader AAC design space that encompasses
state-of-the-art AI.

In the remaining space of this paper we will further explain tinkerability in
AAC, present a framework for tinkerable AAC, and exemplify tinkerable AAC by
presenting a tinkerable text prediction AAC system we have built for this purpose.

2 Tinkerability in AAC

AAC technology is used to assist people with communication disabilities to de-
velop or regain their competence. Many computer-based AAC systems are devel-
oped using numerous representations for vocabulary concepts, including photo-
graphs, symbols, written words, letters of alphabet, and so on (Beukelman and
Light 2020). Due to their physical capabilities, these representations can be ac-
cessed by fingers, toes, elbows, eyes, or use multimodal approaches.

In the past decades, social inclusion has greatly increased (Mirenda 2014). As a
result, literate nonspeaking individuals with motor disabilities tend to adopt a let-
ter-by-letter spelling strategy to communicate as it not only provides a more pre-
cise meaning of expression than images or symbols, but also brings a much wider
range of expressions than preset text (Beukelman and Light 2020). Text predic-

3

tion, including word prediction (Vertanen and Kristensson 2011), phrase predic-
tion (McKillop 2018), sentence retrieval (Kristensson, et al. 2020), and sentence
generation (Shen, et al. 2022) have been used to augment the language composi-
tion function of the AAC system, where vocabulary selection and message man-
agement are key points of system interaction.

Moreover, some AAC users, such as amyotrophic lateral sclerosis (ALS) pa-
tients, have progressive diseases which means their physical capabilities, and thus,
AAC needs, may change over time. For example, an ALS patient may originally
type using a physical keyboard and later rely on eye gaze to communicate using an
eye-typing system. Switching from one particular AAC system to a new one in-
curs upfront learning costs from both the user and the system, the latter which
likely needs to be configured and adapted to the user. This can be frustrating and
challenging for AAC users, in particular, as AAC systems tend to be presented as
black boxes. While tinkerability will not remove any costs in switching systems it
may help reduce frustration by allowing exploration of a new system to best fit
new needs and wants.

In terms of what can be tinkered with, a computer-based system with a user in-
terface (UI) can be partitioned into two components: the front end—what the user
interacts with, and the back end—necessary system logic, such as prediction algo-
rithms and language models. A tinkerable AAC system allows users to manipulate
both the front and back end to meet their requirements and satisfy their curiosity in
exploring the design space of the AAC system.

However, even though a tinkerable AAC system would be beneficial, it remains
difficult to develop one. Prior work (Henderson and Kyng 1995, Ellis, et al. 2021)
identifies four key points about developing a general tinkerable system. First, it
needs to balance complexity and tinkerablility, as tinkering requires additional
buttons, switches, and mechanisms for adding behavior to code. Second, it be-
comes necessary to provide mechanisms for allowing design in use. Third, the sys-
tem must support preserving and reestablishing the state of the system. Fourth, the
three prior points all increase resource requirements in terms of time, money, ex-
perience, etc. to provide a working robust tinkerable AAC system.

There is also the challenge that the sheer complexity of state-of-the-art natural
language processing systems means that the underpinning AI may be difficult to
understand for users, designers, researchers, and developers alike. To allow a tar-
get audience with widely different educational backgrounds and interests to mean-
ingfully tinker with a state-of-the-art word prediction and sentence prediction sys-
tem, supporting sentence retrieval and sentence generation, requires careful
considerations of which parameters to expose, how resulting system behavior can
be analyzed and communicated to end-users, and how sometimes perplexing AI
behavior can be explained to users.

4

3 Tinkerable AAC Framework

To illustrate how a TAAC system contributes to AAC research and development,
we propose a framework (Fig. 1.) that links areas of AAC research and develop-
ment to the qualities of a TAAC system. These links are indicated as purple ar-
rows in the figure. Note that for clarity not all possible links are shown.

The framework divides the qualities of a TAAC into three areas: (1) input de-
vices and techniques; (2) context sensing and AI; and (3) interaction parameters.
Some of these qualities are easier to change than others. For example, to change
input device from a joystick to an eye-tracker necessitates either a very versatile
TAAC hardware platform or an explicit change of hardware device. In contrast,
changing the number of word suggestions shown in a word prediction display nor-
mally only involves simply changing a software parameter and ensuring there is
space in the UI for an additional word suggestion.

The framework also separates out AAC research and development areas. These
are tentative, as a full scoping of this space necessitates a systematic literature re-
view and interviews with AAC researchers. For now, we identify three key areas:
(1) accessibility; (2) personalization; and (3) vocabulary and communication. We
then break down each of these areas into subareas, covering research questions
such as the expressiveness of the keyboard (under Accessibility → Language and
vocabulary interface), and support for small talk (under Vocabulary and commu-
nication → Communication).

A way to use the framework is to use it as a map for better understanding the de-
sign space of TAAC system qualities that can be explored for a particular area, or
subarea, of interest. For example, tinkering with system utterances that reflect us-
ers’ emotions can potentially benefit re-establishing the user’s native language and
further contribute to maintaining their social role, such as a family member. As
another example, altering different language models and their underpinning pa-
rameters may improve language predictions in different communication settings.

The framework can also inform TAAC system design by enabling designers and
researchers to work backwards from the research areas and subareas to ideate ad-
ditional TAAC system qualities that can be incorporated into a TAAC system. In
this way the framework effectively assists TAAC researchers in eliciting require-
ments for a TAAC system that incorporates features with a direct research need.

Finally, in the long run we anticipate the use of systematic design engineering
methods to make inroads in AAC as a complementary methodology (Kristensson,
et al. 2020). In this context, the TAAC framework can be used a map for AAC de-
signers to understand which TAAC system qualities to investigate, for example,
the number of generated sentence suggestions, to gain an understanding into ap-
propriate areas of AAC research and development interest.

5

Fig. 1. A conceptual framework for explaining how qualities of a TAAC system (left) facilitate
AAC research and development (right). The purple arrows indicate pathways linking TAAC sys-
tem qualities that can be used for investigating related areas in AAC research and development.
There are many pathways but we only show a few in the figure for clarity.

4 A Tinkerable AAC Text Prediction System

To demonstrate the viability of tinkerable AAC we have developed a tinkerable
predictive AAC text entry system. This section introduces the design and features
of this system and explains how it may assist AAC researchers and developers to
iteratively improve the system. Fig. 2. shows the system, including its keyboard,
word predictions, and sentence predictions.

TAAC System Qualities AAC Research & Developmentfacilitate

• Devices:
touchscreen | eye-tracker | headstick | joystick

• Input techniques:
touch keyboard | gaze tracking |
scanning keyboard | multimodal interface

Input techniques and devices

• Language and vocabulary interface:
keyboard | visual/auditory/tacticle presentation | word |
phrase | sentence | symbol | photograph | code

• Access technique:
direct selection | scanning

• Display:
fixed | dynamic | hybrid | number | size | arrangement |
spacing | orientation

• Context information:
time | location | weather | conversation partner |
conversation history｜ user profile

• Prediction and generation:
language model | information retrieval
natural language generation | user model

• User interface:
layout | scanning method | selection | feedback |
utterance | prediction display | text display

• Text construction:
text direction | keyword | word prediction |
sentence prediction | auto-correction | auto-fill

Context sensing and AI

Interaction parameters

Accessibility

Personalization

• Language and communication:
tone | accent | language habit | emotion

• Needs and motivations:
social role | communication settings | medical care

Vocabulary and communication

• Vocabulary type:
content word | function word |
personalized vocabulary | core vocabulary

• Vocabulary need:
language format | conversation environment | age |
culture

• Communication:
greeting | small talk | information sharing |
story telling

6

Fig. 2. The main user interface of the tinkerable AAC system.

4.1 Interface

As shown in Fig.2., the menu bar is separated into three sections: File, UI Control,
and Tinker. File allows the user to save the current settings and reload previous
settings as readable text files that can thus be edited outside the system. UI Con-
trol allows the user to move keys on the keyboard around by dragging them and
thus changing the layout and geometry of the keyboard. Similarly, the position of
predicted words and sentences can also be moved around by dragging them. Fur-
ther system tinkering features associated with the back end are integrated into the
Tinker Panel (see Fig. 3.), which can be accessed by choosing Tinker in the menu.

Fig. 3. The tinker panel for word prediction (left) and sentence prediction (right).

7

The system allows configuring gaps between each key and supports two types of
word prediction position mechanisms. The first provides word predictions at pre-
fixed static locations while the second dynamically places word predictions in the
vicinity of the last pressed key. Hence, gaps between each keyboard row provides
space for dynamic word prediction displays, should they be of interest to the AAC
user. Sentence predictions can be shown in static locations. The number of word
and sentence predictions are adjustable from one to four.

By clicking the Speak button the system reads out any output text.
As previously alluded, the Tinker Panel provides the user with an opportunity to

configure back end parameters. Currently it includes five means of word predic-
tion and six approaches for sentence prediction using both AI-based generative
sentence methods and conventional sentence retrieval algorithms. For each
method, there are a list of relevant parameters that can be tinkered with. This fea-
ture is mainly intended for AAC researchers and designers so that they can alter
parameters and assess different models without the need for them to be able to
program or have any expertise in AI or information retrieval.

4.2 Text Prediction

Providing rich tinkerability around the central text prediction function has two
main benefits. First, it allows customization for individual users. A wide range of
language prediction methods allows the AAC user or specialist to choose the most
suitable method for the individual use case. For example, some users require send-
ing repeated commands (for example, “I need water” or “I am tired”). Such text
retrieval can be achieved reliably using information retrieval methods, such as the
included BM25 (Trotman, Puurula and Burgess 2014) and SBERT (Reimers and
Gurevych 2019) approaches.

For other users, communication can potentially be greatly sped up by enabling
users to provide keywords that are used to prompt a language model to generate
entire sentences, for example GPT-2 (Radford, et al. 2019) and KWickChat (Shen,
et al. 2022).

These different methods have different tradeoffs and are hence complementary.
For example, information retrieval methods may be beneficial in routinary conver-
sation with limited and repeated vocabulary, whereas sentence generation may be
more efficient in open conversations, such as a causal chat where an exact utter-
ance is not critical.

In addition, how to enable the AAC user to tell the system to generate or predict
a sentence matters. Fundamentally, there are two approaches: either successive in-
put of a series of words or the input of a series of keywords that serve as a prompt
for a sentence generation algorithm. The two methods require a different interac-
tion style, and one method may be preferred or more suitable for an individual
user, or for a specific interaction context, such as a different environment or situa-
tion.

8

4.3 System Architecture

The tinkerable AAC system uses the model-view-controller (MVC) system archi-
tecture. MVC is one of the most widely used design patterns in software engineer-
ing of graphical user interfaces as it is simple and effective. It consists of three
parts: (1) the model; (2) the view; and (3) the controller. In this system, the model
corresponds to the back end, the algorithms and language models, the view is the
user interface, including the keyboard (the front end), and the controller allows the
user to interact with the front and back end. This modular design facilitates itera-
tive development of the system. For example, if an AAC user is used to inputting
letters via a touchscreen but suddenly requires using an eye-tracker, then an AAC
developer merely needs to add an eye-tracker module to the view and link it to the
controller, rather than developing a completely new system. Thereby the infor-
mation retrieval and AI-based sentence generation subsystems, which require con-
siderable development expertise, are reusable for a wide variety of different soft-
ware development objectives.

We also conjecture that another advantage of this architecture might be that it
simplifies integration of AAC systems that go beyond direct text entry. Many
AAC researchers are interested in supporting conversations that are scenario-
based, such as telling stories (Reiter, et al. 2009), giving instructions (Todman, et
al. 2008), chat (Shen, et al. 2022), and so on. With a flexible system architecture,
developers can more easily integrate state-of-the-art language models into the sys-
tem as a new UI option for AAC researchers with minimal changes in the front
end and thereby benefit from the set of existing subsystems and algorithms that
are already provided by the system.

5 Discussion and Conclusions

This paper has introduced Tinkerable AAC (TAAC) and exemplified it with a
tinkerable AAC system. While this system is a start towards a versatile enabling
technology for user-involved AAC co-design, there are many improvements that
are possible and many design considerations that need to be investigated.

First, from an end-user perspective any manipulation of front end aspects, such
as the position of keys on the keyword and word- and sentence prediction slots,
needs to be easy to understand and access. Further, any such manipulation needs
to be easily reversible by the user.

Second, back end aspects, such as parameter choices and subsystem decisions
need to be thoroughly explained. It will also be necessary to provide users, includ-
ing designers, researchers, and developers, with easy methods to assess the effi-
cacy of various parameter choices and activated subsystems. Ideally, a systematic
approach is followed which could potentially be supported by the system by, for
example, having workflows in the system for exploring and assessing parameter

9

choices as a function of usage. This would enable designers and researchers to ex-
plore what if scenarios in a systematic way.

Third, an important objective of TAAC is to enable lightweight in-situ experi-
ments that do not demand substantial development effort from AAC researchers.
Thus, it will be critical to provide easy-to-use and understand interfaces for setting
up experiments and for logging and analyzing data.

Fourth, it will be important to systematically evaluate any TAAC both in terms
of benefits to end-users and in terms of the experience of designers, researchers,
and developers.

In addition, the TAAC framework is a starting point for linking TAAC system
qualities to AAC research and development areas and subareas. Further work is
required, such as a systematic literature review and interviews with AAC research-
ers, to tease out additional research areas, and expand and refine existing research
areas in the framework. With a more complete TAAC framework it is possible to
work backwards from the research areas to the TAAC system qualities to identify
gaps in support for research in a TAAC system.

In summary, we see TAAC as a promising direction in AAC but many chal-
lenges remain for TAAC to truly take the form of an enabling technology democ-
ratizing AAC design using state-of-the-art AI technologies. As examples of what
is already possible, our existing system provides the scaffolding to assist with the
following investigations: (1) assessing the impact of different text prediction lay-
outs on text entry rate, cognitive load, and physical load; (2) understanding the im-
pact of different language models on the AAC user experience; (3) analyzing how
language behavior changes when AAC users are in different environments; and
(4) assessing the effect of context-aware text entry on communication rate. We
hope TAAC will serve as a platform for incorporating recent AI advances for the
benefit of AAC research and thus act as a catalyst for advanced AAC design ex-
ploiting state-of-the-art AI to ultimately improve the communication rate and user
experience with AAC systems.

6 Open Science

Complete source code for the Tinkerable Keyboard can be found here:
doi:10.17863/CAM.91650

References

Beukelman DR, Light JC (2020) Augmentative & Alternative Communication: Supporting
Children and Adults with Complex Communication Needs. Baltimore: Brookes.

10

Ellis K, Dao E, Smith O, Lindsay S, Olivier P (2021) TapeBlocks: A Making Toolkit for
People Living with Intellectual Disabilities. Proceedings of the 2021 CHI Conference on
Human Factors in Computing Systems. Yokohama, Japan: Association for Computing
Machinery. 1-12.

Henderson A, Kyng M (1995) There's no place like home: Continuing design in use. In Read-
ings in Human-Computer Interaction, by Morgan Kaufmann, 793-803. Elsevier.

Kristensson PO, Lilley J, Black R, Waller A (2020) A Design Engineering Approach for
Quantitatively Exploring Context-Aware Sentence Retrieval for Nonspeaking Individuals
with Motor Disabilities. Proceedings of the 2020 CHI Conference on Human Factors in
Computing Systems. Honolulu, HI, USA: Association for Computing Machinery. 1-11.

McKillop C (2018) Designing a Context Aware AAC Solution. Proceedings of the 20th In-
ternational ACM SIGACCESS Conference on Computers and Accessibility. 468--470.

Mirenda P (2014) Revisiting the Mosaic of Supports Required for Including People with
Severe Intellectual or Developmental Disabilities in their Communities. Augmentative
and Alternative Communication 19-27.

Radford A, Wu J, Child R, Luan D, Amodei D, Sutskever I (2019) Language models are
unsupervised multitask learners. OpenAI blog 9.

Reimers N, Gurevych I (2019) Sentence-bert: Sentence embeddings using siamese bert-net-
works. arXiv preprint arXiv:1908.10084.

Reiter E, Turner R, Alm N, Black R, Dempster M, and Waller A (2009) Understanding the
storytelling of older adults for AAC system design. Proceedings of the 12th European
Workshop on Natural Language Generation (ENLG 2009). 1-8.

Resnick M, Rosenbaum E (2013) Designing for tinkerability. In Design, make, play, 163-
181. Routledge.

Shen J, Yang B, Dudley JJ, and Kristensson PO (2022) KWickChat: A Multi-Turn Dialogue
System for AAC Using Context-Aware Sentence Generation by Bag-of-Keywords. 27th
International Conference on Intelligent User Interfaces. Helsinki Finland: Association for
Computing Machinery. 853-867.

Todman J, Alm N, Higginbotham J, and File P (2008) Whole utterance approaches in AAC.
Augmentative and alternative communication 235-254.

Trotman A, Puurula A, and Burgess B (2014) Improvements to BM25 and Language Models
Examined. Proceedings of the 2014 Australasian Document Computing Symposium.
Melbourne, VIC, Australia. 58-65.

Vertanen K, and Kristensson PO (2011) The imagination of crowds: conversational AAC
language modeling using crowdsourcing and large data sources. Proceedings of the 2011
Conference on Empirical Methods in Natural Language Processing. 700-711.

